
410272-1732/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

Cray Inc. designed the SeaStar
specifically to support Sandia National Lab-
oratories’ ASC Red Storm,1,2 a distributed-
memory parallel computing platform
containing more than 11,000 network end-
points. SeaStar presented designers with sev-
eral challenging goals that were commensurate
with a high-performance network for a sys-
tem of that scale. The primary challenge was
to provide a well-balanced, highly scalable,
highly reliable network. From the Red Storm
perspective, a balanced network is one that
maximizes network performance relative to
the computational power of the network end-
points. A main challenge for SeaStar was to
maximize the bytes-to-flops ratio of network
bandwidth—that is, to maximize the amount
of network bandwidth relative to each node’s
floating-point capability. Table 1 (next page)
presents the peak performance per node and
peak bandwidth per node of the top 10 dis-
tinct systems from the November 2005
Top500 Supercomputer Sites list (http://
www.top500.org). For these purposes, a node
is a symmetric multiprocessing unit that the
network link serves, and peak bandwidth is the
maximum nominal bandwidth of the link
into that node. The SeaStar provides Red

Storm with the highest (peak) bytes-to-flops
ratio by more than a factor of 4.

In addition to traditional network perfor-
mance requirements, SeaStar must support
the challenges associated with scaling a single
scientific application to a machine’s full size.
Red Storm’s purpose is to run tightly coupled,
high-fidelity modeling and simulation codes
on several thousand processors for long peri-
ods of time, typically days. To maintain a high
parallel efficiency as the number of nodes in
the job increases, network performance must
not degrade significantly at scale, and a plat-
form must manage network-related resources
appropriately.

The challenge of attaining network relia-
bility for a platform such as Red Storm comes
from providing mechanisms to ensure correct
data delivery with minimal impact on perfor-
mance and scalability. Reliability issues arise in
a variety of circumstances and scenarios, and
many of them depend on the network’s fun-
damental properties. SeaStar has very desir-
able properties that greatly enhance network
reliability, but its other properties present sig-
nificant challenges.

Although you can view performance, scal-
ability, and reliability independently, each
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characteristic can considerably influence the
others. Design and implementation decisions
made at the hardware level can have perfor-
mance and scalability implications that extend
through the network protocol stack all the way
to the application. Likewise, higher-layer
functionality requirements can have a signif-
icant impact on design and implementation
choices in the layers underneath.

Red Storm
Cray has produced the Red Storm system

as the Cray XT3. Tomkins1 and Alverson2

provide more detailed overviews. Red Storm
is a joint project between Sandia and Cray that

began in 2002. The machine follows the func-
tional partition model, in which nodes run
different software depending on which ser-
vices they provide. Service and I/O nodes run
the Linux operating system. Compute nodes
run a lightweight kernel developed by Sandia
and the University of New Mexico, specifi-
cally designed to support a distributed-mem-
ory, space-shared, massively parallel
computing platform.3

Whereas Cray was ultimately responsible
for delivering the final product, Sandia was
responsible for the system design and archi-
tecture, and has contributed significantly to
the software environment. Specifically, San-
dia provided the lightweight kernel operating
system and its associated runtime system. 

Cray targeted the Portals network pro-
gramming interface,4 also developed jointly
by Sandia and the University of New Mexi-
co, as the lowest message-passing API for the
SeaStar. Portals is a one-sided communication
interface with matching semantics to effi-
ciently support an implementation of the
message-passing interface (MPI).5 Cray ini-
tially provided the Portals implementation for
the SeaStar. As the project progressed, how-
ever, the development of the Portals imple-
mentation and the SeaStar firmware evolved
into a collaborative project. Sandia designed
and implemented the specific network inter-
face controller (NIC)-based firmware
described here.

SeaStar hardware
Figure 1 shows a basic block diagram for

the SeaStar. Independent send and receive
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Table 1. Network bandwidth balance ratios.

Peak node Peak node Ratio 
Machine speed (Gflops) bandwidth (Gbytes/s) (Gbytes/Gflops/s)

ASC Purple 48.0 8.0 0.17
ASC Red Storm 4.0 4.8 1.2
Blue Gene/L 5.6 0.35 0.0625
Columbia 24.0 6.4 0.27
Earth Simulator 64.0 12.3 0.192
Mach 5 16.0 0.5 0.03
MareNostrum 17.6 0.5 0.028
Thunder 22.4 1.0 0.04
Thunderbird 14.4 2.0 0.13

Rx DMA
engineFIFO

Tx DMA
engineFIFO

R
ou

te
r

X+

X 

Y+

Y 

Z+

Z 

H
yp

er
T

ra
ns

po
rt

 c
av

e

HT to
host

Processor Local
SRAM

Headers

Figure 1. SeaStar block diagram.



direct memory access (DMA) engines inter-
act with a router (which supports a 3D torus
interconnect) and a hyper transport (HT)
cave (which provides an interface to the AMD
Opteron processors and host memory). An
embedded IBM PowerPC processor programs
the DMA engines and help with other net-
work-level processing needs.

DMA engines provide robust support for
transferring data between the network and
host memory by providing hardware for
breaking each outgoing message into 64-byte
packets and reassembling incoming messages.
This packetization serves to interleave incom-
ing packets from distinct sources’ different
messages. The SeaStar has a hardware mech-
anism to match incoming packets to their
appropriate message stream, but it can process
only 256 concurrent streams. This is a major
scalability challenge for a network interface
that potentially must handle 10,000 incoming
message streams concurrently.

Besides packetization, DMA engines also
provide hardware support for an end-to-end,
32-bit cyclic redundancy check. (Since the
CRC is performed by the SeaStar at the receiv-
er, it is calculated as data streams through the
SeaStar, not after it has been deposited into
host memory. We assume that the HT link
will detect any data corruption in moving data
from the network into host memory.) This
augments the extremely high reliability pro-
vided by a 16-bit CRC with retries performed
on each of the individual switch links.

The physical links in the network support
up to 2.5 Gbytes/s of data payload in each
direction, accounting for overhead in both the
64-byte packets used by the router and the
reliability protocol on the individual links.
The HT interface runs at 800 MHz, provid-
ing a theoretical peak of 3.2 Gbytes/s per
direction with a peak payload rate of 2.8
Gbytes/s after protocol overheads (and a prac-
tical rate of approximately 2.4 Gbytes/s). The
table-based router provides a fixed path
between all nodes, resulting in ordered deliv-
ery of the individual packets of each message.
The router supports two virtual channels, but
the network interface supports only virtual
channel selection on the send side. On the
receive side, the router combines the two vir-
tual channels into a single receive queue.

The embedded processor on the SeaStar is

a dual-issue, 500-MHz PowerPC 440 proces-
sor with independent 32-Kbyte instruction
and data caches. The firmware running on the
PowerPC is responsible for programming the
DMA engines, since programming them via
the host processor with accesses over the HT
is prohibitively slow. On the receive side, the
firmware is also responsible for recognizing
the start of new messages and processing
incoming message headers. The firmware
must also recognize and respond to DMA
completion events.

To hold the firmware and local state, and to
handle interactions with the host, the SeaStar
has 384 Kbytes of scratch memory. This mem-
ory is protected by error correcting code, com-
plete with scrubbing to find and correct errors
as they occur. In this context, the firmware
running on the network interface must han-
dle a certain portion of the network manage-
ment. However, the firmware can also be
augmented to handle other aspects of the pro-
tocol stack. Here, we present firmware imple-
mentation details for both a host-based mode,
which does minimal work on the SeaStar, and
a NIC-based mode, which offloads most of the
Portals processing to the PowerPC.

Firmware
Sandia developed firmware to run on the

SeaStar’s embedded processor, using C and a
standard GNU tool chain for the PowerPC
440. The firmware currently consists of just
over 6,000 lines of C code and approximate-
ly 200 lines of assembly code, according to
Wheeler’s SLOCCount tool (www.dwheel-
er.com/sloccount). When compiled, this
results in a 36-Kbyte binary image. We give
more detailed descriptions of the development
tools used and the firmware’s internals in a
previous paper.6

General architecture
At the most basic level, the firmware’s job is

to program the SeaStar’s DMA engines to
move messages between host memory and the
network. The firmware must track and make
progress on multiple concurrent message
transmissions and receptions, and notify the
host when each has completed.

At the host, several client processes require
access to the high-speed network. This num-
ber varies based on the operating environ-
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ment. Linux service nodes typically have 10
to 100 clients, whereas compute nodes (which
run the Catamount lightweight kernel) have
one management client and usually one appli-
cation process per host CPU core. To keep
maintenance tasks manageable, we chose to
develop a single firmware image that supports
both operating environments.

Host-based mode
In host-based mode, application-level

requests trap into the kernel, which then for-
wards requests to a single firmware-level mail-
box. This approach makes it possible to
support many clients, because each firmware
mailbox and its associated pool of message-
tracking structures consume a large portion
of the SeaStar’s 384 Kbytes of memory.

This mode can handle transfers that are
either physically contiguous or physically dis-
contiguous. For transfers that span physical-
ly contiguous regions of memory, the kernel
simply passes the starting physical address and
message length in a command to the
firmware. The firmware’s messaging machin-
ery then generates the DMA engine com-
mands on the fly. 

In the physically discontiguous case, which
includes handling requests from Linux
processes, the kernel generates the list of DMA
engine commands and passes it to the
firmware. When each message transmission
or reception is complete, the firmware posts
an event to host memory and interrupts the
host processor. The operating system is then
responsible for delivering the event to the
appropriate client process. Brightwell, Pedret-
ti, and Underwood give a more detailed
description and performance evaluation of
this mode of operation.7

NIC-based mode
The goal of this mode is to avoid interac-

tions with the host processor and operating
system as much as possible, similar to what
other high-performance networks have done.8,9

The benefits are reduced latency, increased
message throughput (messages processed per
second), and reduced host overhead related to
message processing; together, these effects
make more of the host CPUs available for
computation. The trade-offs are that the
embedded processor is far slower than the host

CPUs, and the amount of SeaStar memory is
more than two orders of magnitude smaller
than the memory that the host could dedicate
to message passing. We developed NIC-based
mode to evaluate whether these obstacles were
surmountable. As with supporting both Linux
and Catamount, we chose to implement sup-
port for both host- and NIC-based modes in
the same firmware image.

For a process to use the network, it must
call the Portals library initialization routine.
Using Portals’ trusted mailbox, the kernel for-
wards initialization and shutdown requests
to the firmware. For NIC-based mode, ini-
tialization involves allocating SeaStar mem-
ory for a new untrusted mailbox and related
firmware structures, mapping the mailbox
into the process’ virtual address space, and
providing the firmware with a map of this
space. Once initialization has successfully
completed, the process can then initiate fur-
ther operations by writing directly to its mail-
box in SeaStar memory.

Because this user-level mailbox is untrust-
ed, the firmware must carefully inspect all
commands received at this mailbox. The
firmware uses the address map provided by
the kernel to ensure that data transfers stay
within the bounds of the process’ address
space. This is relatively straightforward for the
processes running under the lightweight ker-
nel, since Catamount provides a physically
contiguous address space. However, since the
SeaStar has no hardware support for virtual-
to-physical address mapping, a very limited
amount of scratch memory, and a relatively
long access time to host memory, supporting
operating systems that do not ensure a phys-
ically contiguous mapping is significantly
more complex. Given this extra complexity
and the additional performance costs associ-
ated with supporting physically discontigu-
ous translations, NIC-based mode currently
works only with Catamount.

In addition to protecting the source and des-
tination of data transfers, we also needed to pro-
tect a trusted portion of the Portals header that
precedes every message. This trusted portion
contains information such as the source node
ID and process ID, which a user-level process
should not be able to modify. Protecting the
trusted header from modification is compli-
cated by the fact that the SeaStar can send mes-
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sages only from host memory. If this were not
the case, the NIC could simply construct the
entire header in SeaStar memory and send the
header in a single DMA command. Unfortu-
nately, this limitation of the SeaStar means that
the trusted portion of the header must be kept
in kernel memory, and two DMA commands
are necessary to send the different parts of the
message header. However, the added complex-
ity and extra DMA command incur no signif-
icant performance penalty.

Once the firmware recognizes and validates
a command written into the mailbox, it per-
forms the requested operation. It can handle
some commands, such as memory registra-
tion and receive posting, immediately, and
post the result back to the process. Other com-
mands, such as put and get operations, must
go to the firmware’s messaging machinery.
Once the data movement specified by these
commands is completed, the firmware gener-
ates a completion event and writes it directly
into an event queue in the process’ memory.
The process must eventually poll the event
queue to recognize the event. Unlike the host-
based implementation, posting an event does
not involve raising and processing an inter-
rupt on the host.

The NIC-based mode’s most significant
performance benefit is its ability to handle
message reception autonomously without
involving the host processor or operating sys-
tem. For host-based mode, every time a new
message arrives, the firmware must raise an
interrupt to ask the operating system where
to deliver it. From a latency perspective, this
path is extremely expensive because the inter-
rupt potentially causes a context switch into
the operating system and involves several rel-
atively slow round-trip accesses across the HT
bus. In contrast, the NIC-based implementa-
tion has all the information necessary to deter-
mine where in host memory to put incoming
messages, effectively bypassing or offloading
this responsibility from the operating system
and the application.

When a message arrives, the firmware’s messaging
machinery passes the header information to anoth-
er routine, which parses information in the header to
determine exactly where in host memory to deposit
the incoming message. Once the firmware deter-
mines the message’s ultimate destination, it gives the
messaging machinery the destination address in host

memory and the number of bytes to receive, which
implicitly gives the number of trailing bytes to dis-
card, if any. Once message reception is complete, the
messaging machinery notifies another routine,
responsible for writing a completion event directly
into the host client’s event queue in host memory.

Flow control protocol
As mentioned, a unique feature of the SeaSt-

ar is its hardware support for demultiplexing
incoming packets into their appropriate mes-
sage stream. However, this hardware can han-
dle only 256 simultaneous message streams
from distinct sources. When the flow reaches
this capacity, the hardware cannot process long
messages from new sources and discards them
until space is available in the hardware
resource. (Long messages are longer than 16
bytes. Short messages—less than 16 bytes—
fit in one 64-byte packet along with the head-
er and are receivable without demultiplexing
hardware. Thus, the SeaStar needs an end-to-
end flow control protocol to recover from lost
messages in rare circumstances when the hard-
ware resource is insufficient to handle the
number of concurrent messages received.

Because the individual switch links guar-
antee delivery of packets uncorrupted and in
order, the protocol needs only to handle the
simple case of resource exhaustion. Thus, we
can avoid many of the complications typical
of a protocol for an unreliable network. Most
notably, control messages do not require the
same hardware resource as longer messages
and we can assume them to always complete
successfully; however, many other issues still
apply. The flow control protocol must pre-
serve pair-wise message ordering, for exam-
ple. Portals and MPI mandate that message
reception (and the resulting matching) must
occur in order. If a message is dropped due to
resource exhaustion, any subsequent in-flight
messages from that source must be dropped,
even if resources in the demultiplexer become
available. Buffering is not feasible, because the
space required on the receiver could be very
large or unbounded. Our protocol drops the
incoming messages instead. 

The protocol uses a sequence number on
each message. It sends an explicit acknowl-
edge (ACK) or negative acknowledge
(NACK) in response to every message. The
acknowledgment (positive or negative) explic-

45MAY–JUNE 2006



itly specifies the message to which it refers.
Message-dependent deadlock10 is not an issue,
because data and control messages use inde-
pendent virtual channels. The receiver tracks
sequence numbers only when a message has
been negatively acknowledged.

Protocol integration
The transmit side requires very little mod-

ification to support the protocol. Without the
protocol, when a transmit command is issued,
the firmware builds an appropriate pending
structure and places it on the transmission
queue; when the DMA engine signals trans-
mit (Tx) completion, the firmware posts an
event to the event queue for this message.
When we add the protocol to the transmit
path (as in Figure 2), the same process occurs
except that a successful acknowledgment
(ACK) must be received before the comple-
tion event posts to the host. Either the ACK
or the completion notification from the DMA
engine can occur first; thus, the protocol can
mark the pending structure can as receiving
an ACK while still waiting for the transmit to
complete, or the message can complete and
move to a hash table to await its ACK.

The other wrinkle is the receipt of a NACK.
When a NACK is received, the message
(through the pending structure) is marked as
requiring retransmission. If it has completed
or when it completes, the message will go back
into the transmission queue. It is not possible
to cancel a message for which the DMA

engines have already been programmed, so the
message must be transmitted in its entirety. A
message is retransmitted each time a NACK
is received until the message has a successful
acknowledgment. Because this can occur only
in a resource exhaustion case at the receiver,
there is no limit on the number of retries, and
the sender will eventually be throttled.

The changes to the receive path are techni-
cally more challenging, but conceptually as
simple as those to the transmit side. In nor-
mal operation, the only change (other than
the addition of tests for several exception con-
ditions) is the addition of an ACK transmis-
sion as soon as a new message header is
processed. Early ACK transmission enables
the sender to free resources more quickly. It
also means that an ACK (or even a NACK)
could be received before the message finishes
transmission.

In the presence of exception conditions,
several things change. When the flow of mes-
sages exhausts the SeaStar stream management
resource, the hardware must drop the message
and send a NACK. When it drops the mes-
sage, the firmware increments a counter to
indicate that there are outstanding dropped
messages, and sets a bit in a large bit mask,
indicating the dropping of a message from
that source. The firmware updates a corre-
sponding entry in the receive (Rx) sequence
number field to indicate the sequence number
of the dropped message. The only time the
firmware checks the Rx sequence number is
when the counter is non-zero and the bit cor-
responding to the messages source is set.

Once a message has been negatively
acknowledged, the next message could be out
of sequence or a retransmitted message. Either
can now be identified because

• a counter identifies abnormal operation, 
• a bit mask indicates the affected source,

and 
• the first sequence number defines the

expected retransmission sequence (an
early test in the receive path detects
abnormal operation and checks the
sequence numbers only when necessary).

The firmware discontinues abnormal oper-
ation as soon as it receives the first retransmit;
it then clears the bit field and decrements the
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counter. Hence, this protocol expects retrans-
missions in order—a relatively easy guarantee
to make at the sender. 

Sequence number storage and synchronization 
A sequence number is required for each

message to let the sender know which mes-
sage has been dropped and to detect the result-
ing out-of-sequence messages at the receiver.
Connection establishment, however, is a far
too heavy action for a lightweight protocol,
and can lead to an application-related persis-
tent state. Such state can be difficult to clean
up quickly during abnormal termination. Fur-
thermore, connection state must be light
enough that every node can have a connec-
tion to every other. With only 384 Kbytes of
SeaStar memory, this translates into having
exactly one sequence number pair preallocat-
ed for every other node in the system. The
sequence space can be small (16 bits), because
other resources in the system limit the num-
ber of in-flight messages between a pair of
nodes to fewer than 1,024. Therefore, 64
Kbytes of memory can store the sequence
numbers for a 16,000-node system, which can
comfortably fit in SeaStar memory.

Having node-level, persistent sequence
numbers implies the need for a way to syn-
chronize sequence numbers when a node is
rebooted; however, this is not needed. Our
strategy manages Rx sequence numbers loose-
ly; normal operation has no need for expect-
ed Rx sequence numbers. The only time the
Rx sequence number requires checking is after
an exception.

Nominally, the protocol supports sequence
number synchronization so that we could
extend the protocol to have additional relia-
bility features. To accomplish this, we reserve
a special sequence number. Rebooting a node
sets its Tx sequence number to the reserved
sequence number for all potential pairs.
Receiving the initial sequence number can
serve to reset the expected Rx sequence num-
ber, if an Rx sequence number was expected.
Receiving a noninitial sequence number when
the initial sequence number is expected would
also reset the expected Rx sequence number
to whatever was received. Thus, this scheme
can synchronize sequence numbers quickly,
but only when necessary and without the
exchange of extra messages.

Handling exception conditions 
Adding the protocol to the network path

brings a set of extra obligations—for exam-
ple, handling the case when a node is down.
Fortunately, Portals has a well-defined failure
semantic so that a message to a node that is
down can “fail.” To handle this type of sce-
nario, we introduced two new types of
acknowledgment packets:

• a PREBOOT_ACK for nodes that are
powered on, but not fully booted allows
the recipient to tell the sender that this
message and all previous outstanding
messages to this node should be failed,
and

• a FIRST_POSTBOOT_ACK ensures
that the first message a node sees after
boot will succeed, but all previous out-
standing messages will fail.

As a final precaution, it is possible for the
target node to be powered off. In these cases,
the protocol must not leak resources, so we
introduced a timeout mechanism. After a very
long time without an ACK, the protocol will
free the resource freed and fail the message.
This works acceptably and a “very long time”
is reasonable to define, because messages to
powered off nodes are rare.

Optimization opportunities 
There are two specific opportunities for opti-

mizating this protocol that we have designed
but not yet implemented for production use.
The first is an implicit acknowledgment scheme
that prevents the need for acknowledgment pro-
cessing for extremely small messages. The sec-
ond is a back-off scheme to prevent
retransmission floods in worst-case scenarios.

Because we designed the protocol to han-
dle the exhaustion of a resource to resolve
packets to messages, very small messages
(those that require only a single packet) do
not need protocol protection. These messages
can be implicitly acknowledged at the source,
which reduces the protocol processing load.
The design of implicit acknowledgments,
however, requires some care. Because a very
short message can directly follow a long mes-
sage and transmit before the receiver acknowl-
edges the long message, the very short message
might require retransmission. If the hardware
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drops the long message, the receiver has
nowhere to buffer the very short message. A
prototype implementation indicates that mes-
sage throughput improves by approximately
10 percent for messages with 16 bytes of pay-
load or less; thus, it is not clear that the advan-
tage outweighs the added complexity.

The second optimization relates to the
potential for a single flood of messages to a
node to cause an extremely high number of
retries. In a typical scenario, we rarely expect
most nodes to receive a flood of perfectly
interleaved messages that exhaust the hard-
ware’s ability to resolve packets to messages.
If this situation does happen, you might
expect a retransmit or two. However, the sit-
uation in which an I/O node simultaneously
receives a large write request from every com-
pute node can still cause a performance prob-
lem. Although the design of most higher-level
software can mitigate such a scenario, the
potential exists, especially for I/O nodes, to
address N-to-1 communication patterns,
where N can be arbitrarily large. In such a sce-
nario, our protocol will cause rapid retrans-
mits, which will ultimately fail as they
compete for scarce resources. To address this
problem, the negative acknowledgment mes-
sage has a field to indicate the sender’s place in
line. The firmware increments a simple satu-
rating counter for each NACK sent, and
decrements it for each ACK. This notifies the
sender of the amount of pressure on the hard-
ware resource and allows the sender to devel-
op a back-off scheme before retransmitting.

Portals
We have described the Portals implemen-

tation for the SeaStar in a previous article.11

Our initial performance evaluation of the
NIC-based mode’s implementation motivat-
ed optimizations. We encountered two sig-
nificant opportunities for optimization—one
that involved adding to the Portals specifica-
tion, and one that modified the way our MPI
implementation used Portals.

MPI receive posting
First, performance analysis showed that

posting an MPI receive was far slower using
NIC-based mode than host-based mode. This
would often lead to confusing results for our
standard suite of microbenchmarks. Eventu-
ally, we traced this issue to the fact that many
microbenchmarks did not ensure the pre-
posting of MPI receives. NIC-based mode’s
slower receive posting meant that more mes-
sages ended up being unexpected compared
to host-based mode, which resulted in degrad-
ed performance.

The underlying cause of NIC-based mode’s
poor receive posting performance was that a
round-trip to the SeaStar across the HT link
is more than an order of magnitude slower
than a Catamount system call (approximate-
ly 1 µs versus 65 ns). As Figure 3 shows, post-
ing an MPI receive requires three round-trips
to the SeaStar. Host-based mode can handle
this sequence of three calls in the operating
system, without involving the firmware, so the
overhead of each is roughly equivalent to three
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system calls. To reduce the number of round-
trips across the HT down to one, we com-
bined these three operations into a single
function call, PtlPost().

The original Portals design focused on iden-
tifying a set of general building blocks for easy
combination into a variety of upper-level pro-
tocols. In this instance, creating a specialized
API call that combined several of the simpler
building blocks into one aggregate operation
led to significant performance advantages for
a critical MPI operation. This new call is now
part of the official Portals specification. 

Preregistration of memory 
The second significant optimization that

we made to better support NIC-based mode
modified the way MPI used Portals for send-
ing messages. Like the PtlPost() optimization,
we aimed this change at reducing the number
of round-trips required to perform a common
operation—in this case, sending a message.
We also intended to reduce the number of
Portals resources that MPI used for sending
messages, freeing more SeaStar memory for
receiving messages.

The previous implementation of MPI used
three different protocols for short, medium,
and long messages.12 For medium and long
messages, MPI would first create a Portals
memory descriptor (MD) describing the user’s
buffer in one operation and then use the new
MD to initiate a subsequent put operation.
This would result in two HT traversals to ini-
tiate each send operation and consume an
MD for each send— potentially consuming
significant resources for applications that use
MPI nonblocking sends.

Catamount allows an optimization to this
approach. Since the regions of a Catamount
process are physically as well as virtually con-
tiguous, the MPI implementation can use
only a few MDs to cover a process’ entire
address space. During initialization, MPI cre-
ates an MD that spans the data region, an MD
that spans the stack region, and an MD that
spans the heap region. This approach elimi-
nates the need to create an MD for each indi-
vidual user buffer, because one of these region
MDs already covers the user buffer. This
reduces the number of HT crossings to just
the one for the put operation.

We expected the impact of this change on

the ping-pong bandwidth performance for
medium and long messages to be minimal
because an HT crossing is not significant
relative to the time needed for the transfer.
However, we did expect this optimization
to improve message rate and help free up
Portals resources allocated from SeaStar
memory.

Test environment
The platform used for our experiments is

the 10,368 processor Red Storm machine at
Sandia. This machine is a slightly specialized
version of the commercial XT3 product. It
differs from the XT3 in that the network is
not a torus in all three directions. To support
the easy switching of portions of the machine
between classified and unclassified use, Red
Storm has special switching cabinets. This
capability and the limitation of cable lengths
allow the network to be a torus only in the z
direction. Each node in Red Storm has a 2.0-
GHz Opteron with at least 2 Gbytes of main
memory.

Benchmarks 
We chose several microbenchmarks for our

initial evaluation, beginning with a simple test
of ping-pong latency and bandwidth. For
streaming tests, we used a bandwidth bench-
mark developed by Ohio State University,
which posts 64 messages at the receiver and then
sends a stream of messages from the sender. To
measure collective performance, we used the
Pallas MPI benchmark suite version 2.2.1
(www.pallas.com/e/products/pmb/index.htm).
Finally, we used a benchmark developed at San-
dia to measure the impacts of MPI queue depths
on network performance.13

Results
We group results into three basic categories:

traditional point-to-point benchmarks, col-
lective benchmarks, and other data. In each
instance, we compare the system with Portals
processing implemented on the host and the
NIC. In each case, we also evaluate the impact
of adding the simple protocol.

For each graph, the left axis graphs perfor-
mance (either in time or bandwidth), and
most graphs include the percentage advantage
provided by a NIC-based implementation on
the right axis.
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Basic point-to-point benchmarks
Figure 4 compares the small-message laten-

cy of the host- and NIC-based Portals imple-
mentations. The difference is greater than 1
µs for extremely small messages, and nearly 3
µs for larger messages. This is the advantage of
eliminating one interrupt for small messages,
and two interrupts for larger messages (new
message start and message completion). The
transition point between 16 bytes and 32
bytes is one of the network’s limitations. The
small packet size forces the transition from
programmed I/O (PIO) mode transfers to
DMA transfers to occur at this point. Adding
the protocol has measurable, but minimal,
impact on ping-pong latency, because much
of the protocol processing can overlap with
host interactions.

The SeaStar has an impressive unidirectional
MPI bandwidth, as Figure 5 shows; it is attrib-
utable to the use of the HT interface to the
host. Peak bandwidth is currently greater than
1.1 Gbytes/s. We expect that Cray will deliv-
er a second-generation SeaStar in 2006 with a
bandwidth of more than 2 Gbytes/s. Although
the NIC-based implementation offers very lit-
tle advantage at extremely large message sizes,
at small to moderate message sizes the signifi-
cant reduction yields major advantages for the
NIC-based implementation.

The NIC-based implementation also offers
dramatic advantages in streaming bandwidth
benchmarks, as Figure 6 shows. In the NIC-
based implementation, the work is better par-
titioned between the host and NIC processor.
This allows better overall message throughput
than the host-based implementation; howev-
er, it also begins to introduce limitations, as
more work is needed on the NIC. The pro-
tocol, for example, reduces the advantage of
the NIC-based implementation because it
introduces more work on the NIC. In the
host-based implementation, much of this
work overlaps with Portals and MPI process-
ing occurring on the host.

Another strong advantage of moving away
from bus-based interfaces to the host and
toward bidirectional interfaces like HT is the
ability to sustain full bidirectional bandwidth.
As Figure 7 (page 52) shows, bidirectional
bandwidth on Red Storm is twice the unidi-
rectional bandwidth; however, the bandwidth
curves suffer somewhat with the protocol’s
introduction because there is no longer any-
where to hide the extra processing overhead.

Pallas collective benchmarks 
The Pallas benchmark suite includes bench-

marks for many collective operations. Rather
than include an excessive number of graphs,
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we have selected four that are relevant to many
of the applications at Sandia. The first of these
is MPI Barrier, a collective that is virtually

never needed to write a correct MPI program;
however, many application developers find it
useful for debugging and timing, and so ulti-
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mately leave it in production codes. Because
the barrier operation involves a significant
number of small messages, it is one of the few

benchmarks in which adding the protocol
makes a noticeable difference in performance.
Overall, the NIC-based Portals implementa-
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tion has a significant advan-
tage over the host-based
implementation (as Figure 8
shows), particularly when
there are more than 16 nodes.

MPI Allreduce and MPI
Reduce are also common oper-
ations in many of Sandia’s
codes. Unlike the barrier oper-
ation, the reduction operations
have data associated with them
and require some computation
on the host. The results pre-
sented in Figure 9 use 16-byte
reductions, which are repre-
sentative of the data used in
Sandia operations (a double-
precision number or a double-
precision complex number).
Moving Portals processing to
the NIC has a slightly more
significant advantage for MPI
Allreduce than for MPI Barri-
er because the MPI Allreduce
has work to do on the host that
can overlap with the protocol
processing.

MPI Reduce receives an
even greater advantage thanks
to its subtle differences from
the MPI Allreduce operation.
Whereas MPI Allreduce must
reduce a single number and
distribute it to all participat-
ing processors, a node in MPI
Reduce can exit the call as
soon as it finishes participat-
ing in the communication.
This means that communica-
tions from two consecutive
reductions can overlap, which
leverages the offload provided
by the NIC-based implemen-
tation. It also means that there
is more opportunity to hide
the protocol processing, and
so MPI Reduce does not suf-
fer a performance penalty
from the protocol.

The final collective opera-
tion (shown in Figure 11) is
MPI Allgather. This is an
interesting operation in that
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the number of messages sent and the size of
the message scale with the number of nodes.
Thus, the time grows quadratically with the
number of nodes, and the time for the host-
and NIC-based implementations begin to
converge slightly at larger message numbers.

Profiling results
So, where does the time go? Figure 10 pre-

sents a one-way profile of the ping-pong oper-
ations for both the host- and NIC-based
Portals implementations. One striking thing
to note is that the HT latency is a major con-
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tributor to overall latency. Whereas HT gen-
erally has a far lower latency than other bus
interfaces, the architecture of the SeaStar
requires that an embedded processor commu-
nicate with the host processor through a shared
RAM resource. The time for the processors to
recognize that a new item has been written is
a dominant factor in the HT latency.

The next significant characteristic to note is
that the router time and the MPI time are both
small slivers of the overall time. The router is
highly optimized for high-performance com-
puting, unlike current InfiniBand routers, for
example, which are an order of magnitude
slower (http://www.infinibandta.org). And
most of the work for MPI (such as context and
tag matching) is included in Portals.

Moving up the bar graphs, the time to noti-
fy the host of an Rx event is comparable for both
host- and NIC-based implementations, as is the
time spent in the polling loop. This is the main
loop on the NIC that looks for work to do. It is
responsible for polling hardware to check for
new events and for polling a RAM region used
for communicating with the host. The initial
firmware implementation used roughly 500 ns
per cycle through this polling loop; we have
optimized this to less than 130 ns through pro-
filing and analysis of the code paths.

Both transmit and receive operations push
more work to the NIC for the NIC-based
implementation. Thus, NIC-based imple-
mentations require more time to set up trans-
mit and receive operations. However, the
host-side Portals work drops dramatically, and
moving most of the Portals work to the NIC
eliminates the interrupt latencies. The NIC-
based implementation still has a small amount
of time that is not well characterized. Some of
this time might be due to the timing granu-
larity on the NIC and some to the overhead
added by the protocol.

Other issues 
Moving processing to the network interface

can have significant ramifications. One limi-
tation of traditional benchmarks is that they
do not consider “real” scenarios. For example,
benchmarks tend to consider only one receive
at a time, while applications tend to have more
than one posted receive. Host-based imple-
mentations typically keep posted receives in a
linked list that the receiver checks or “walks”

every time a new message arrives. When that
processing moves from a fast host processor
to a slower NIC processor, a long posted-
receive queue can translate into much higher
effective network latency. Figure 11 illustrates
the difference in latencies as the length of the
posted-receive queue increases. The NIC pays
a penalty of approximately 30 ns for each item
traversed (for the fastest NIC in the indus-
try13); thus, after traversing a list of 50 items,
the NIC-based approach actually loses to the
host-based approach.

There are two important caveats attached
to this result. Foremost, the benchmark’s
nature is inherently friendlier to the more
advanced processor in the host. The two
major issues are that the host processor has a
much larger cache, and that, unlike the NIC
processor, the host processor has a hardware
prefetcher. In a benchmark world with a strict-
ly ordered list, the combination of these two
means that the host processor is faster than it
should be on a per-message basis by at least a
factor of 5 (the host processor should pay a
cache miss for every list item). The second
caveat is that, although some applications use
extremely long lists, many have typical list
lengths of 30 items or fewer.14

The Cray XT3 system has opportunities
for improvement that we expect to

implement in the near future. For example,
we are currently implementing a back-off
scheme to better manage a flood of traffic to
a single node. In addition, we are considering
performance optimizations (such as offloaded
collective operations) that leverage the 500-
MHz, embedded PowerPC. We are also con-
sidering a rendezvous protocol on the
PowerPC for long messages. The current MPI
implementation uses eager sends for all mes-
sages, which occasionally forces the receiver
to drop long messages if the receiver does not
find a matching posted receive. Implement-
ing a rendezvous protocol in the NIC will
allow support for true independent progress in
MPI while eliminating the risk of potentially
retransmitting large messages.

We are also planning an in-depth analysis of
the impact of these additions and changes on
real applications at scale. Several of these
enhancements might significantly increase
application performance and scalability.
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